Nonlinear quantum optomechanics via individual intrinsic two-level defects.
نویسندگان
چکیده
We propose to use the intrinsic two-level system (TLS) defect states found naturally in integrated optomechanical devices for exploring cavity QED-like phenomena with localized phonons. The Jaynes-Cummings-type interaction between TLS and mechanics can reach the strong coupling regime for existing nano-optomechanical systems, observable via clear signatures in the optomechanical output spectrum. These signatures persist even at finite temperature, and we derive an explicit expression for the temperature at which they vanish. Further, the ability to drive the defect with a microwave field allows for realization of phonon blockade, and the available controls are sufficient to deterministically prepare non-classical states of the mechanical resonator.
منابع مشابه
Cavity optomechanics mediated by a quantum two-level system
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum-mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the set...
متن کاملEnhanced nonlinear interactions in quantum optomechanics via mechanical amplification
The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only addi...
متن کاملProposal for an optomechanical microwave sensor at the subphoton level.
Because of their low energy content, microwave signals at the single-photon level are extremely challenging to measure. Guided by recent progress in single-photon optomechanics and hybrid optomechanical systems, we propose a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via adiabatic transfer of the microwave signal to the optical fr...
متن کاملAll-optical tuning of a quantum dot in a coupled cavity system
Related Articles Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance Appl. Phys. Lett. 101, 081912 (2012) Optimized optomechanical crystal cavity with acoustic radiation shield Appl. Phys. Lett. 101, 081115 (2012) Development of metamaterials with desired broadband optical properties Appl. Phys. Lett. 101, 07...
متن کاملAnomalous optical bistability and robust entanglement of mechanical oscillators
Quantum coherence is one of the most intriguing applications of quantum mechanics, and has led to interesting phenomena and uncommon results. Here we show that in a stark contrast to the usual red-detuned condition to observe bistability in single-mode optomechanics, the optical intensities exhibit bistability for all values of cavity-laser detuning due to intermode coupling induced by the two-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 19 شماره
صفحات -
تاریخ انتشار 2013